skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Farina, Emanuele P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present VLT/MUSE observations targeting the extended Lyman-α(Lyα) emission of five high-redshift (z ∼ 3-4) submillimeter galaxies (SMGs) with increasing quasi-stellar object (QSO) radiation: two SMGs; two SMGs that host a QSO; and one SMG that hosts a QSO with an SMG companion (QSO+SMG). These sources are predicted to be located in dark matter halos of comparable masses (average mass ofMDM ∼ 1012.2 M). We quantified the luminosity and extent of the Lyαemission, together with its kinematics, and examined four Lyαpowering mechanisms: photoionization from QSOs or star formation, shocks by galactic and/or QSO outflows, gravitational cooling radiation, and Lyαphoton resonant scattering. We find a variety of Lyαluminosities and extents, with the QSO+SMG system displaying the most extended and bright nebula, followed by the SMGs hosting a QSO, and finally the undetected circumgalactic medium of SMGs. This diversity implies that gravitational cooling is unlikely to be the main powering mechanism. We show that photoionization from the QSO and QSO outflows can contribute to power the emission for average densitiesnH > 0.5 cm−3. Moreover, the observed Lyαluminosities scale with the QSO’s budget of Lyαphotons modulo the dust content in each galaxy, highlighting a possible contribution from resonant scattering of QSO radiation in powering the nebulae. We find larger Lyαlinewidths (FWHM ≳ 1200 km s−1) than usually reported around radio-quiet systems, pointing to large-scale outflows. A statistical survey targeting similar high-redshift massive systems with known host properties is needed to confirm our findings. 
    more » « less
  2. ABSTRACT The presence of excess scatter in the Ly-α forest at z ∼ 5.5, together with the existence of sporadic extended opaque Gunn-Peterson troughs, has started to provide robust evidence for a late end of hydrogen reionization. However, low data quality and systematic uncertainties complicate the use of Ly-α transmission as a precision probe of reionization’s end stages. In this paper, we assemble a sample of 67 quasar sightlines at z > 5.5 with high signal-to-noise ratios of >10 per ≤15 km s−1 spectral pixel, relying largely on the new XQR-30 quasar sample. XQR-30 is a large program on VLT/X-Shooter which obtained deep (SNR > 20 per pixel) spectra of 30 quasars at z > 5.7. We carefully account for systematics in continuum reconstruction, instrumentation, and contamination by damped Ly-α systems. We present improved measurements of the mean Ly-α transmission over 4.9 < z < 6.1. Using all known systematics in a forward modelling analysis, we find excellent agreement between the observed Ly-α transmission distributions and the homogeneous-UVB simulations Sherwood and Nyx up to z ≤ 5.2 (<1σ), and mild tension (∼2.5σ) at z = 5.3. Homogeneous UVB models are ruled out by excess Ly-α transmission scatter at z ≥ 5.4 with high confidence (>3.5σ). Our results indicate that reionization-related fluctuations, whether in the UVB, residual neutral hydrogen fraction, and/or IGM temperature, persist in the intergalactic medium until at least z = 5.3 (t = 1.1 Gyr after the big bang). This is further evidence for a late end to reionization. 
    more » « less
  3. Abstract We report the results of near-infrared spectroscopic observations of 37 quasars in the redshift range 6.3 < z ≤ 7.64, including 32 quasars at z > 6.5, forming the largest quasar near-infrared spectral sample at this redshift. The spectra, taken with Keck, Gemini, VLT, and Magellan, allow investigations of central black hole mass and quasar rest-frame ultraviolet spectral properties. The black hole masses derived from the Mg ii emission lines are in the range (0.3–3.6) × 10 9 M ⊙ , which requires massive seed black holes with masses ≳10 3 –10 4 M ⊙ , assuming Eddington accretion since z = 30. The Eddington ratio distribution peaks at λ Edd ∼ 0.8 and has a mean of 1.08, suggesting high accretion rates for these quasars. The C iv –Mg ii emission-line velocity differences in our sample show an increase of C iv blueshift toward higher redshift, but the evolutionary trend observed from this sample is weaker than the previous results from smaller samples at similar redshift. The Fe ii /Mg ii flux ratios derived for these quasars up to z = 7.6, compared with previous measurements at different redshifts, do not show any evidence of strong redshift evolution, suggesting metal-enriched environments in these quasars. Using this quasar sample, we create a quasar composite spectrum for z > 6.5 quasars and find no significant redshift evolution of quasar broad emission lines and continuum slope, except for a blueshift of the C iv line. Our sample yields a strong broad absorption line quasar fraction of ∼24%, higher than the fractions in lower-redshift quasar samples, although this could be affected by small sample statistics and selection effects. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)